User manual of DMV 4000 pressure gauge amplifier

Bagsik Sp. z o.o.
ul. Toruńska 8, 44-100 Gliwice
tel: +32 334 0000, fax: +32 331 7520, office@bagsik.net, www.bagsik.net

User manual M2

Strain gauge amplifier with a calibration for 350Ω melt pressure sensors

Technical features:

- red display of -19999... 99999 Digits (optional: green, orange or blue display)
- minimal installation depth: 70 mm without plug-in screw terminal
- min/max-memory
- 30 additional adjustable supporting points
- display flashing at threshold value exceedance / threshold value undercut
- zero-key for triggering of hold, Tara or sensor alignment
- digital input for triggering of hold, Tara or sensor alignment
- permanent min/max-value recording
- sensor alignment with integrated switching output
- mathematic functions like reciprocal value, square root, squaring or rounding
- sliding average determination
- brightness control
- programming interlock via access code
- protection class IP65 at the front side
- plug-in screw terminal
- optional: 2 relay outputs
- accessories: PC-based configuration-kit PM-TOOL with CD \& USB-adapter for devices without keypad and for a simple adjustment of standard devices

Identification

STANDARD TYPES	ORDER NUMBER
Weighing technology - strain gauges	M2-1MR5B.020X.570CD
Housing size: $96 \times 48 \mathrm{~mm}$	M2-1MR5B.020X.670CD

Options - breakdown product key:

Contents

1. Brief description2
2. Assembly 3
3. Electrical connection 4
4. Functions and operation description 6
4.1. Programming software PM-TOOL 7
5. Setting up the device 8
5.1. Switching on 8
5.2. Standard parameterisation (flat operation level) 8Value assigment for triggering of the singal input
5.3. Programming interlock .RUM" 11
Activation/Deactivation of the programming interlock or change into the professional level respectively back into the flat operation level
5.4. Extended parameterisation (professional operation level) 12
5.4.1. Signal input parameter „"MP" 12
Value assigment for triggering of the singal input incl. linearisation
5.4.2. General device parameter „ $F C T T^{*}$ 15
Higher device functions like Hold, Tara, min/max permanent, average determination, brightness control, as well as the control of the digital input and the keyboard configuration
5.4.3. Safety parameter „COD" 18
Assignment of user and master code for locking or access to certain parameters like e.g. analog output and alarms, etc.
5.4.4. Relay functions „REL" 19
Parameter for the definition of the setpoints
5.4.5. Alarm parameter „RLL...RL4" 21
Activator and dependencies of the alarms
6. Reset to factory settings 22
Reset of the parameter to the factory default settings
7. Alarms / Relays 23
Function principle of the switching outputs
8. Sensor alignment 24
Function diagram for sensors with existing trimming resistor
9. Technical data 25
10. Safety advices 27
11. Error elimination 28

1. Brief description

The panel meter M2-1M is a 5-digit device for connection to a 4-wire-measuring bridge with calibration contact (80% alignment) and a visual threshold value monitoring via the display. The configuration happens via four front keys or via the optional PC software PM-TOOL. An integrated programming interlock prevents unrequested changes of the parameters and can be unlocked again by an individual code. Optional the following functions are available: a 10 V bridge feeding, a digital input for the triggering of Hold (Tara) or the 80\%-alignment and two optional galvanic isolated setpoints, by which free adjustable threshold values can be controlled and reported to a superior master display.
The electrical connection is carried out on the back side via plug-in terminals.
Selectable functions like e.g. the request of the min/max-value, an average determination of the measuring signals, a nominal preset respectively setpoint preset, a direct change of threshold value in operation mode and additional measuring supporting points for linearisation complete the modern device concept.

2. Assembly

Please read the Safety advices on page 27 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

The dimension symbols can be exchanged before installation via a channel on the side!

3. Electrical connection

Type M2-1MR5B.020X.470CD supply of 115 VAC
Type M2-1MR5B.020X.570CD supply of 230 VAC
Type M2-1MR5B.020X.670CD supply of 10-30 VDC

Options:

Relay 1
Relay 2

4. Function and operation description

Operation

The operation is divided into three different levels.
Menu level (delivery status)
This level is for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise PROF under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise ULOC under menu item RUM.

Parameterisation level:

Parameter deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus safed. By pressing the [O]-key (zero-key) it leads to a break-off of the value input and to a change into the menu level. All adjustments are safed automatically by the device and it changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu level	P	Change to parameterisation level and deposited values.
	$\triangle \square$	Keys for up and down navigation in the menu level.
	O	Change into operation mode.
Parameterisation level	P	To confirm the changes made at the parameterization level.
	$\triangle \square$	Adjustment of the value / the setting.
	0	Change into menu level or break-off in value input.
Menu group level	P	Change to menu level.
	$\triangle \square$	Keys for up and down navigation in the menu group level.
	O	Change into operation mode or back into menu level.

Function chart:

Underline:

P Takeover
(O) Stop
(Value selection (+)

- Value selection (-)

4.1 Parameterisation software PM-TOOL:

Part of the PM-TOOL are the software on CD and one USB-cable with device adapter. The connection happens via a 4-pole micromatch-plug on the back side of the device, to the PC-side the connection happens via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and safed on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

CAUTION!

During parameterisation with connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanic not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting up the device

5.1. Switching-on

Once the installation is complete, start the device by applying the voltage supply. First, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test ($\begin{array}{ll}8 & 8 \\ 8 & 8\end{array}$) is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.
5.2. Standard parameterisation: (Flat operation level)

To parameterise the display, press the [P]-key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.
Menu level

Menu level	Parameterisation level
	Special function digital input, DIG.IM: Default: SE.CRL The above given parameters can be set for the operation mode onto the optional digital input aswell. See function description TRST. 4.
	Threshold values / limit values, $L 1-1$: Default: 2000 P \square This limit value defines the threshold, that leads to an activation / deactivation of the alarm.
	Hysteresis for limit values, HY -7: Default: 0 The difference to the threshold value that causes the delay of the actuation of the alarm, is defined by the hysteresis.
	Function if display falls below / exceeds limit value, $\mathrm{FU}-\mathrm{l}$: Default: HIGH HILH \square Laus \square The limit value undercut can be selected with LOUU (LOW = lower limit value) and limit value exceedance can be selected with HIGH (HIGH = upper limit value). If e.g. limit value 1 is on a switching threshold of 100 and occupied with function H HGH, the alarm will be activated by reaching the threshold. If the limit value is allocated to LOU, an alarm will be activated by undercut of the threshold.
	Threshold values / limit values, Ll-z: Default: 3000 This limit value defines the threshold, that leads to an activation / deactivation of the alarm.

Menu level	Parameterisation level
$\begin{aligned} & H U-\Xi \\ & \nabla \Delta \Delta \end{aligned}$	Hysteresis for threshold values， Hy －z： Default： 0 \square The difference to the threshold value that causes the delay of the actuation of the alarm，is defined by the hysteresis．
$\begin{aligned} & \left.F_{\omega}-\Xi\right] \\ & \nabla \Delta \mid \end{aligned}$	Function if display falls below／exceeds limit value，FU－2： Default：HIGH HILH Laus \square The limit value undercut can be selected with LOUU（LOW＝lower limit value）and limit value exceedance can be selected with HIGH（HIGH＝upper limit value）．If e．g．limit value 1 is on a switching threshold of 100 and occupied with function $H G H$ ，the alarm will be activated by reaching the threshold．If the limit value is allocated to LOU，an alarm will be activated by undercut of the threshold．
$\begin{aligned} & \text { HILロGE } \\ & \|\nabla \triangle\| \end{aligned}$	User code（4－digit number－combination，free available），U．CODE： Default： 0000 If this code is set（ >0000 ），all parameters are locked for the user，if $L O C$ has been selected under menu item RUM．By pressing $[\mathrm{P}]$ for approx． 3 seconds in operation mode，the message $C O D E$ is shown in the display．Enter the preset U．CODE to get access to the set of parameters which are unlocked for the user．The code needs to be entered bevor each try of parameterisation，as long as R．CODE（Master code）all parameters are unlocked again．
	Master code（4－digit number－combination free available），R．CODE： Default： 1234 After LOC has been activated under menu item RUM，this code can be used for unlocking all parameters．By pressing［P］for approx． 3 seconds in operation mode，the message CODE is shown in the display and offer the user access to all parameters by entering R．CODE．While leaving this parameterisation it can be unlocked permanently under RUM by selecting ULOC or PROF．So，at an anew pressing of $[P]$ in operating mode，an anew entereing of the code is not needed．

| Menu level | Parameterisation level |
| :--- | :--- | :--- |
| 5.3. Programming interlock | |

5.4. Extended parameterisation (Professional operation level)

5.4.1. Signal input parameters

Menu level	Parameterisation level
	Rescaling the measuring input values, EMDA: Default: 10000 With this function, you can rescale the input value of e.g. $1.1 \mathbf{m V}$ (works setting) without applying a measuring signal.
$\begin{gathered} \square F F 5 月 \\ \|\nabla \Delta\| \end{gathered}$	Rescaling the measuring input values, OFFR: Default: 0 With this function, you can rescale the input value of e.g. $\mathbf{0 . 1} \mathbf{~ m V}$ (works setting) without applying a measuring signal.
$\begin{aligned} & \mid L B r B \\ & \|\nabla \Delta\| \end{aligned}$	Default: 0 \square P P \square P \square P The given value is added to the linearized value. In this way, the characteristic line can be shifted by the selected amount.
	Default: 80.00 The balance point is preset to 80%. Assume an 80% detuning while switching the alignment relay during an automatic sensor alignment. This value can be freely adjusted.
$\begin{aligned} & \mid 5 P L L \\ & \|\nabla \Delta\| \mid \end{aligned}$	Number of additional setpoints, SPCT: Default: 00 \square \square values are not linearised. Only activated setpoint parameters are displayed.
$\begin{array}{c\|c\|} \hline-i) & 5 . \square \mid \\ 4 \nabla & \Delta \end{array}$	Display values for setpoints, 015.01 ... D15.30: Under this parameter setpoints are defined according to their value. At the sensor calibration, like at final value/offset, one is asked at the end if a calibration shall be activated.

Menu level	Parameterisation level
$\begin{aligned} & \because \cap ワ . \square! \\ & \nabla \triangle \Delta \mid \end{aligned}$	Analog values for setpoints, IMP. 01 ... IMP.30: \square P \square \square P \square The setpoints are always preset according to the selected input signal mA/V. The demanded analog values can be freely adjusted in ascending order.
dilund	Device undercut, DIIUMD: Default: -19999 With this function the device undercut (\qquad) can be defined on a definite value. Exception is input type 4-20 mA, it already shows undercut at a signal $<1 \mathrm{~mA}$, so a sensor failure is marked.
	Display overflow, DI.OUE: Default: 99999 With this function the display overflow (-----) can be defined on a definite value.
$\begin{aligned} & \square \\ & \hline \nabla E L \\ & \nabla \Delta \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-IMP-".

5.4.2. General device parameters

| Menu level | Parameterisation level |
| :--- | :--- | :--- |

Arithmetics, RRITH:
Default: MO

With this function the calculated value, not the measuring value, is shown in the display. With $M O$, no calculation is deposited. With $[\mathrm{P}]$ the selection is confirmed and the device changes into menu level.

Sliding average determination, $R V G$:

Default: 10

Menu level	Parameterisation level
	Display, DISPL: Default: RCTUR Rb5.uR Rctur Hin nu MRHUR HaLd \square RUL P With this function the current measuring value, the min/max-value, the totaliser, the processcontrolled hold-value, the sliding average value, the constant value or the difference between constant value and current value can be allocated to the display. With $[\mathrm{P}]$ the selection is confirmed and the device changes into menu level.
$\begin{aligned} & L A L H L \\ & \|\nabla \Delta\| \end{aligned}$	Brightness control, LIGHT: Default: 15 \square The brightness of the display can be adjusted in 16 levels from $00=$ very dark to $15=$ very bright via this parameter or alternatively via the navigation keys from the outside. During the start of the device the level that is deposited under this parameter will always be used, even though the brightness has been changed via the navigation keys in the meantime.
$\begin{aligned} & F \angle B \Xi H \\ & \nabla \Delta \Delta \mid \end{aligned}$	Display flashing, FLRSH: Default: MO A display flashing can be added as additional alarm function either to single or to a combination of off-limit condition. With MO, no flashing is allocated.
	Assignment (deposit) of key functions, TRST: Default: MO For the operation mode, special functions can be deposited on the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$], in particular this function is made for devices in housing size $48 \times 24 \mathrm{~mm}$ which do not have a 4 th key ([O]-key). If the min/max-memory is activated with EHTR, all measured min/max-values are saved during operation and can be recalled via the navigation keys. The values get lost by restart of the device. If the threshold value correction $L I .12$ or $L 1.34$ is choosen, the values of the threshold can be changed during operation without disturbing the operating procedure. With TRRR the device is tared to zero and safed permanently as Offset. The device confirms the correct taring by showing $\mathbf{0 0 0 0 0}$ in the display. SET.TR changes into the offset value and can be changed via the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$]. The configuration of $E H T . R E$ deletes the min/maxmemory.

5.4.3. Safety parameters

Menu level

5.4.4. Relay functions

Menu level	Parameterisation level			
	Alerting rela Default：RL－2 LoLI Each setpoin at activated available in the other selected activated／dea front of the de	2，REL－z： optional）can be linke arms RLI／Y or deactiv menu level LOG－1 and functions，these two p vated，in this case th ce．With［P］the selec	RL－n：．．．．RL－n4 via 4 alarms（by default）．This can either be inserted d alarms RLMT／4．If LOGIC is selected，logical links are 7－1．Access to these two menu levels is via LOGIC，at all meters are overleaped．Via OM／OFF the setpoints can be output and the setpoint display are set／not set on the is confirmed and the device changes into menu level．	
$\begin{aligned} & \operatorname{La\\| }-\Sigma \mid \\ & \|\nabla \Delta\| \end{aligned}$	Logic relay Default： $0 R$ Here，the sw describes the LOGIC was sel	LOG－2： ching behavior of the functions with inclu ed under REL－l．	Rind y is defined via a logic link，the following schema f RL－7 and RL－2：This parameter can only be selected if	
	$\square 1$	A1 v A2	As soon as a selected alarm is activated，the relay operates．Equates to operating current principle．	
	のロ｜	$\overline{A 1 \vee A 2}=\overline{A 1} \wedge \bar{A}$	The relay operates only，if no selected alarm is active．Equates to quiescent current principle．	
	日n	A1 \wedge a 2	The relay operates only，if all selected alarms are active．	
	のアの	$\overline{A 1 \wedge A 2}=\overline{A 1} \vee$	As soon as a selected alarm is not activated，the relay operates．	
	With［P］the selection is confirmed and the device changes into menu level．			
$\begin{aligned} & {[a \Pi-\Xi \mid} \\ & \|\nabla \Delta\| \mid \end{aligned}$	Alarms for Default： 8.2 R． 1 The allocatio alarms can b With［ P ］the	ay 2 con－z： R． 2 of the alarms to rela chosen．This parame ection is confirmed and	happens via this parameter，one alarm or a group of can only be selected if LOGIC was selected under REL－7． he device changes into menu level．	
$\begin{aligned} & \square \\ & \hline-E L \\ & \nabla \Delta \mid \end{aligned}$	Back to men With［P］the	group level，RET： ection is confirmed and		

5.4.5. Alarm parameters

Depedency of alarm.1, RLRT.l:
Default: RCTUR

Menu level	Parameterisation level
$\begin{aligned} & \qquad \square \square-i \\ & \qquad \nabla \Delta \mid \end{aligned}$	Switching-on delay, TOM-7: Default: 000 For limit value 1 one can preset a delayed switching-on of 0-100 seconds.
$\begin{aligned} & \text { LaF-i } \\ & \|\nabla \Delta\| \end{aligned}$	Switching-off delay, Tof-l: Default: 000 For limit value 1 one can preset a delayed switching-off of $0-100$ seconds.
$\begin{aligned} & \square-E L \\ & \uparrow \nabla \Delta \mid \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .,-ALI-".

The same applies to -RL2- to -RLL-

Programming interlock:

Description see page 11, menu-level RUM

6. Reset to factoty settings

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P]-button until „- . - -" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This sets the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S2; furthermore alarms can be controlled by events like e.g. Hold or min/max-value.

Function principle of alarms / relays

Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, min/max-value, Hold-value, sliding average value or an activation via the digital input or the [O]-key.
Switching threshold	Threshold / limit value of the change-over
Hysteresis	Broadness of the window between the switching thresholds
Working principle	Operating current / Quiescent current

Operating current

By operating current the alarm S1-S2 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S2 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a shortterm exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterised time.

8. Sensor calibration offset / final value

The device has an automatic calibration at mass pressure sensors, where an integrated switching output operates an often available 80% calibration. Like this offset and final value are adjusted, and the sensor can be applied directly after this. The calibration can be done via the 4th key or the digital input, depending on the parameterisation.

If a special input range SEMS.l, SENS.2, SEMS. 3 was selected under TYPE, a checking of the range is done for offset and final value. At an undercut/exceedance of $\pm 20 \%$ of adjustment range, an C.FRIL is given out.

9. Technical data

Housing	
Dimensions	96x48x70 mm (BxHxD)
	$96 \times 48 \times 89 \mathrm{~mm}(\mathrm{BxHxD})$ including plug-in terminal
Panel cut-out	$92.0^{+0.8} \times 45.0^{+0.6} \mathrm{~mm}$
Wall thickness	up to 15 mm
Fixing	screw elements
Material	PC Polycarbonate, black, UL94V-0
Sealing material	EPDM, 65 Shore, black
Protection class	standard IP65 (front), IP00 (back side)
Weight	approx. 200 g
Connection	plug-in terminal; wire cross-section up to $2.5 \mathrm{~mm}^{2}$
Display	
Digit height	14 mm
Segment colour	red (optional green, orange or blue)
Display range	-19999 up to 99999
Setpoints	one LED per setpoint
Overflow	horizontal bars at the top
Underflow	horizontal bars at the top
Display time	0.1 to 10.0 seconds
Input	
Sensor sensitivity	$1 \mathrm{mV} / \mathrm{V}, 2 \mathrm{mV} / \mathrm{V}, 3.3 \mathrm{mV} / \mathrm{V}$, free up to $4 \mathrm{mV} / \mathrm{V}$ with 80% calibration
Measuring bridge	250-500 $/$ / 20-40 mA
Measuring error	$0,2 \%$ of measuring range in electromagnetic dominated environment, 1% of measuring range in industrial invironment with strong disturbing source
Digital input	$\begin{aligned} & <2.4 \mathrm{~V} \text { OFF, } 10 \mathrm{~V} \text { ON, max. } 30 \mathrm{VDC} \\ & \mathrm{R}_{\mathrm{I}} \sim 5 \mathrm{k} \Omega \end{aligned}$
Sensor calibration	always required
Accuracy	
Temperature drift	100 ppm / K
Measuring time	$0.1 \ldots 10.0$ seconds
Measuring principle	U/F-conversion
Resolution	approx. 18 bit at 1s measuring time, $3.3 \mathrm{mV} / \mathrm{V}$ measuring range

Output	
Switching outputs	
Relay with change-over contacts Switching cycles	250 VAC / 5 AAC; 30 VDC / 5 ADC 30×10^{3} at 5 AAC, 5 ADC ohm resistive burden 10×10^{6} mechanically Diversification according to DIN EN50178 / Characteristics according to DIN EN60255
Power supply	230 VAC $\pm 10 \%$ max. 10 VA 10-30 VDC galv. isolated, max. 4 VA
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	$0 . . .50^{\circ} \mathrm{C}$
Storing temperature	$-20 . .80^{\circ} \mathrm{C}$
Weathering resistance	relative humidity 0-80\% on years average without dew
EMV	EN 61326
CE-sign	Conformity according to directive 2004/108/EG
Safety standard	According to low voltage directive 2006/95/EG EN 61010; EN 60664-1

10. Safety advices

Please read the following safety advices and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The M2-1M device is designed for the evaluation and display of sensor signals.

Attention! Careless use or improper operation can result in personal injury and/or cause damage to the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The M2-1M device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, you receive best measuring results.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

11. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow.	- The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated switching points are parameterised. Check if the relevant parameters are adjusted correctly. - An absolutely incorrect alignment has been done bevor, e.g. without connected sensor. In this case a reset to the factory setting should be carried out.
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit . - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated switching points are parameterised. Check if the relevant parameters are adjusted correctly. - An absolutely incorrect alignment has been done bevor, e.g. without connected sensor. In this case a reset to the factory setting should be carried out.
3.	The word "HELP" lights up in the 7-segment display.	- The unit has found an error in the configuration memory. Perform a reset on the default values and reconfigure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated - Enter correct code
5.	"ERRI" lights up in the 7-segment display	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure that the device has been parameterised before, then follow the steps as written in chapter 6 and set it back to its delivery status.

\qquad

Pressure sensors
CDA \quad - from 50 to 1400 bar $-3.33 \mathrm{mV} / \mathrm{V}$ signal
CDAI $\quad-0-10 \mathrm{~V}, 4-20 \mathrm{~mA}$ analog signal
CDTA - integrated thermocouple, $3.33 \mathrm{mV} / \mathrm{V}$ signal
CDTAI - integrated thermocouple, analog signal

Plugs

Pressure transducers plugs, 6 pin
Temperature sensors plugs
All plugs have golden pins and they are compatible with EMC and assure the security in compliance with technological standards

Interconnect cables
Shielded carbon fibre braided cables to pressure transducers.

- Ready set with plug for pressure - 3 m
- According to customer specifications from the spool per meter

BP rupture discs

- 1/2" thread
- Pressure range from 0 to 1000 bar
- Temperature from 350 to $550^{\circ} \mathrm{C}$

Reducer bushing socket cleaning tools

Any contamination of sensor mounting thread can cause its destruction. To avoid this the socket and reduction bushing mounting thread should be cleande before every sensor replacement. This will extend the life of the sensor and reduc-

Reducer bushings

- M16-1/2"-20 UNF-2A
- M18x1,5 - 1/2"-20 UNF-2A
- M24 - M18x1,5

